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DIFFERENTIAL EQUATIONS IN AIRPLANE MECHAKIOS.*
By .

M, T, Carleman.

For deternining the motion of ar airplans, we have adopted
the hypothesis that the reactlions of the alr depend entirely on
the relative speed of the alrplans. Ever if we 9.d9pt tke sin-
plest lams of resliatance, we obtain differentisl =guations whioch
we can not Integrate explicltly. If we confine ourselves to the
motion 1n a vertioal plane and, at tha same time, ~ssume a con-
stant angle of attack, we still obtein diffesential squations
whlch oan not be integratad by .elanenta.ry :nethod.s.

In tke Zollowing paragraphs s Ve w1l Zizst draw sore con-
clusions of purely itteoretiocal interest, from the general equa~
tions of nmotion. At ths end, we willl conelder the motion of en
alzplane, with the sngine dead and withl the assumption that the
angle of attaqk remalns constant. Thua we arrive at a simple
result, which ocz=n be rendared practically utiligeble for deter—~
mining the trajeotory of an airplane descending at a constant
stesring angle. o

- Lat us assume that the airplane moves in its plane of syr—e-
try, consldered vertiocal. Let x and y xepresent a s_ystan of
coordinates in thile tlans, thé axis of the x 1lines being hori-
zontal and the axle of the ¥ 1lines belng vertical and upward.

Let ve designate by u and v the _p}'oj'eotions o2 the velooity w
* From "La Teoknigue Aeronautique,” May, 1921.
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of the osnter of gravity of the airplane or the axes of x and ¥y
and by the angle ¢ the augle of the velooity with the axis of
the x lines. Let uc designate by M tke amaus of the alrplaone
end by UI 1its moment of lnertie witk relstion to an axis pass-
ing through the oenter of gravity at right angles to the plane
xy. The foroes soting on the alrplane are:

Its weight lg directed toward -y:

Propellez thrust T. of which we will designate by MA arnd
YB +Ls componsmts in the directlon of w and at right sngles
to 1;

Drag, If 5 w3, ir the direction -w;

Lift, ¥ © w3, at right angles tc w.

Under these ooidltione the thaory of the motion of the cen-

ter of gravity glvew us

W = - Kawlocos ¥ +¥Acos ¥ ~Hbw2ein ¥ - ¥ B sin V.

L‘I%%=—Ha.w3 gin vV +MAegin ¥V +UDbw?oos ¥V +M Bcosg¥-

Br substituting
=4 =X
cos V¥ v gln ¥ =
ve have
(1) -g%é=-w (au+bv) +-‘L1'1'*—;;—BJ-
(3) %%=-w(a.v—bu) +AY—';'|.|;—]-31ll -g

w= /u2 +v=,
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If wa projsot these foross on the tangent and or the psc-

pendioular to the trajectory, we obtaln
(3) %%; - aw? - g ein ¥ + A.

4) w3 = bw2 - g cos ¥ + B.

at

By lettiag
a= p sin « L& =Kocos B
b= p cos « B=K 3in B

Ve ocan, by introduoing imaginary Juantivies, combine squations

(1) and (3) in%o & singls equation

(5) Slutiv) -4y p ei°‘+§gig)(u + iv) - gl

4

The noment of the alr resistances sbout the center of grav-

ity can bs expressed in the form

¥wee(g) - uwded¥) g(o)

in which G and H 'are the psriodic functions of the angle of at-

-ta0k ¢, which varies with the steering angle. Te then have,

acoording to the theory of mosion about the center of gravity,

(8) Igg—%ﬁ—i) =w2e{o) -wﬂ%{—t) H(o).

* Let us assume that the influsnoe of altitude may be neglecs-
ed. By multirlying equation (1) by u and equation (3) by v
and edding tas results, we obtain '
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‘(7) :; -gz—él=-a.w3+Aw-gv.

The quantity a, Decessarily implying & lowsr positive limi%
a', 1s obtalnsd from equaiioa (7).

(8) + d9m2 . ..w'(a.'wa- (P+g)).

NP represénting the maxirmum propeller thrust, from which we rea-
_son that the speed oan not go on increasing indefinitely. To be
nore exact, 1t must remain below
P+ g |
at
in whion a" 1is any quantity emaller than a'.
By means of equation (1) we can easily demonstrate the fol-

lowing theorem, which is practically self-evident. If the engins

a9 8 2irnlene a ove env fixed borizon 1ine

Iy period of time. Ve find, in.fact, by integrating equation (7)
batween to and +t(A and B being zero)

-% (wg? - wo?) = - Jt- aw® dt - g (y4 - 7o)-
to

Taking into acocount the inequaliiy 'a. > a' > 0, the hyrotkesis
Y4 > 0 gives ua

' t
a' 4 w3 dt < %w°3+gyo.
0
It follows that the integral

S w3 at
%
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1g converzent, Remarking that by rsason of eduations (7) and

(g), %1;-5 is limited, we Teason from this that’ w tends towards

zeTo, vhen % tends toward infinity. Henoe we Lave also
(¢) 1im v =0, limuw =0
Y =w t= o
Consajuently, thasre 1e an infinity of values of %, %, t, .- tn

such that we have

(10) Um dvy -, 1w \ =0 lim t4 =@
- 2 — 0 3 =
:~_=°,\d.‘b/tn n=ow &t/tn | t=o

Py substizutlng t+ = t, in the eduation

ar - . - -
ot w (av - bu) - g

and by =~2zing n tend toward infinity, we a.lrrive at the ebsurdi-
ty g = 0. The hypothesis Yy >0 is therefore 1nadmissible.
Let us mow assume the thrust and zagle of attack to remain
constant. On dividing equation (8) by w2, we see that for a
oconstant atearing ungle of the slevator, this hy;'o_thesis con-
cerning the angle of attack 1s judtified in prorortion as 1.
end H are smaller and w 1s larger. Froa equations ’(1) and
(3) we deduoce the differential equetion

m o—
(12) (u® +%2) (auw + ov) - 4u + Bv

dv

(u? + v2) (av - Bu) ~Ay ~Bu + g /u® +vs
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in which &, b, A and B ars constents. Oncs this equation is
integrated, %, x and y erve ottalned by qua.&ra.tures. Fe oan
aocordingly oconfins curasives to the stud.§ of the integral cur;res
‘of aguation (il), kat 13, to dete-mining the Lodograph of +he
rotion. Ve ocarn apply to equation (11) tkre mettods given by lr.
Poinosrd in his memoirs: "On ocurves defined by 3 differential
equation” (Journal de Ma*hematiques pures et applique’ea; 1e81-~
1888). We ses that equstions (1) ard (3) define wu and v for
every value of +, when-the initial velooity Ugvo is glven.
On considering u and v as ocartesian coordinates of a point
in the pléme, ithe point (u,v) desoribes a certain characteris-
tlo curve. “ren % varles from O ‘to infinity. Ve ocall "ein-
gular. pointa" those vhere the second members of equations (1)
and (3) disaprear at t:e same time or become discontimuous., In
+hs case under considerction, there is, eslde from the origin,
only one other singular point cf finite cistance. We have al-
ready seen (inequality 8) tha.'l; the cheracteristios remein at &
finite distance. Under this condition, the theory of Poinoare’
ghoTs us that a ﬁowledge of the singular points and olosed char-
acteristios (iimited ovoles) at a finite distance suffices for
finding tre course of the integral cmrveé, vhen t tends toward
infinity.

Instead of going deeply into this study here, we shall taks
up by a simpler method, the case where the rropsller thrust is
zezo. Equation (11) 1is reduced to



du = v

w (au + btv) w (av - bu) + g

(13)

For & = C,* that is %0 say. a =0, b= p, this equation 1s
r3adily intsgrated by means of the elementary functions. We have,
in faot,

o av _mxdw
PYwW - puw + g gv

dence

gin = p w2 4w

pE: —_qu=20 (0 = arbitrary constant)

By va.ryin_g 0 we obtaln a cystem S of closed, non-intersecting
onrves,. which embrace tte whcle plane.

In the case a = 11/3, ocorresponding to the motion of a sphere
Az o reesisting medium, equation (13) ocan be integrated by quadra-
tures, as demongtrated by Liocuviile.

Although we do not know for o &ny general integral of squa~-
tion (13), we oan conmstruct its integral ourves by a simple method.
Ve have, in faot, the followlng theorem. -The Integral curves of
eguation (13) are the trajectories of the angle a of tl;e system of

8 ourves.

s/s .
p (w2 '*‘3‘79) - gu = oonstant

provided we oonsider these trajectories with reference to ths rec—

* In his article "Le vol Aerien" (Aerial Flight), Hr. Lanchester
discuised the fall of an alrplane under this hypothesis, which re~
turns to the assumption that the alrplane does not lose energy.
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tangular axss which make the angle « (in the positive direction)
with the original trajectories (see figure).
For the demons'bra.‘aicxi, we write the differential eqQquations in

the following condensed form

v (13) Q,_.(JL_:I-__i-Idt ) = iw “pe™® (u +iv) - gl

which is obtained from equation (5) by letting K = 0. By mhking
¢ =0 in equation (13) we find, for the S8 system, the differen-

ticl equation

(14) -d-—(na-%'—-u-l=iwp(u+iv)-gi.

Ws obtain tae differentisl equation of the trajectorles of the an-
gle 0 by mltiplying the second member of equatiocn (14) by o™,

Henoce

(15) -d—ma:"b'—lz) = iw p el® {u + iv) - giel®

The chenrge of axes indlocated in the above statement is obtained by
mltiplying u + iv in eguation (15) by el®. By dividing the
ratio thus obtained by ei%, we return to equation (13), whioch dem-
onstrates the theorem.

All the charsocteristios tend toward the point

u= /£ocos v, v=- /fEgin-a
A e

which corresponds to a rectilinear and uniform descent.* If the in-

= If an integral curve passes near the point uw=v = 0, we can
hardly expect that 1t will correspond to the real motion of the air-
plane, because the hypothesis that the angle of attack remains con~
atant is not justifled for low speeds.
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tegral curve cuts the axis of the negative u's, n times, the air-
plare sxecutes n loops. We come, therefore, to the following
conoclusion. Vhatever be the initial velocity, the airplane, 1a.'f1'.s:-
exeouting, if neocessary. a finite mumber of loops, acquires a mo-
tion which approaches indefinitely & state of rmeotilinear end umi-

form descent.

Translated by Natlonal Advisory Committee for Aeronautiocs.
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